Hierarchical Nominal Terms and Their Theory of Rewriting

نویسنده

  • Murdoch James Gabbay
چکیده

Nominal rewriting introduced a novel method of specifying rewriting on syntax-with-binding. We extend this treatment of rewriting with hierarchy of variables representing increasingly ‘meta-level’ variables, e.g. in hierarchical nominal term rewriting the meta-level unknowns (representing unknown terms) in a rewrite rule can be ‘folded into’ the syntax itself (and rewritten). To the extent that rewriting is a mathematical metaframework for logic and computation, and nominal rewriting is a framework with native support for binders, hierarchical nominal term rewriting is a meta-to-the-omega level framework for logic and computation with binders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From nominal to higher-order rewriting and back again

We present a translation function from nominal rewriting systems (NRSs) to combinatory reduction systems (CRSs), transforming closed nominal rules and ground nominal terms to CRSs rules and terms, respectively, while preserving the rewriting relation. We also provide a reduction-preserving translation in the other direction, from CRSs to NRSs, improving over a previously defined translation. Th...

متن کامل

Two-level Lambda-calculus

Two-level lambda-calculus is designed to provide a mathematical model of capturing substitution, also called instantiation. Instantiation is a feature of the ‘informal meta-level’; it appears pervasively in specifications of the syntax and semantics of formal languages. The two-level lambda-calculus has two levels of variable. Lambda-abstraction and beta-reduction exist for both levels. A level...

متن کامل

Closed nominal rewriting and efficiently computable nominal

We analyse the relationship between nominal algebra and nominal rewriting, giving a new and concise presentation of equational deduction in nominal theories. With some new results, we characterise a subclass of equational theories for which nominal rewriting provides a complete and efficient procedure to check nominal algebra equality. This subclass includes specifications of lambda-calculus an...

متن کامل

Rewriting in the partial algebra of typed terms modulo AC

We study the partial algebra of typed terms with an associative commutative and idempotent operator (typed AC-terms). The originality lies in the representation of the typing policy by a graph which has a decidable monadic theory. In this paper we show on two examples that some results on AC-terms can be raised to the level of typed AC-terms. The examples are the results on rational languages (...

متن کامل

Closed nominal rewriting and efficiently computable nominal algebra equality

We analyse the relationship between nominal algebra and nominal rewriting, giving a new and concise presentation of equational deduction in nominal theories. With some new results, we characterise a subclass of equational theories for which nominal rewriting provides a complete procedure to check nominal algebra equality. This subclass includes specifications of lambda-calculus and first-order ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. Notes Theor. Comput. Sci.

دوره 174  شماره 

صفحات  -

تاریخ انتشار 2007